organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Graham Smith,^a* Urs D. Wermuth^a and Peter C. Healy^b

^aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and ^bSchool of Science, Griffith University, Nathan, Queensland 4111, Australia

Correspondence e-mail: g.smith@qut.edu.au

Key indicators

Single-crystal X-ray study T = 297 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.038 wR factor = 0.111 Data-to-parameter ratio = 11.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Anhydrous quinolinium 2,4,6-trinitrobenzenesulfonate

The title compound, $C_9H_8N^+\cdot C_6H_2N_3O_9S_7^-$ forms a simple dimer structure through a single $N^+-H^{-1}\cdot O$ hydrogen bond involving a sulfonate O atom of the cation. Some cation-cation $\pi-\pi$ interactions are also present.

Comment

Quinoline $(pK_a = 4.8)$ can be readily protonated by sulfonic acids as well as by many carboxylic acids. The single N⁺-H donor group of the resultant quinolinium cation is not a particularly efficient one for molecular assembly via hydrogen bonding. However, cation-cation or cation-anion π - π associations together with aromatic C-H···O interactions are often present in the structures of quinolinium compounds with aromatic carboxylic acids that give stable crystalline materials, e.g. in the anhydrous salt with 3,5-dinitrosalicylic acid (Smith et al., 2006). With aromatic sulfonic acids, the presence of the additional O acceptor atom of the sulfonate group usually results in the incorporation of donor-rich solvent molecules such as water in the crystal structure, e.g. quinolinium 5sulfosalicylate trihydrate (Smith et al., 2004). Therefore, the formation of the title compound, (I), from the 1:1 stoichiometric reaction of quinoline with picrylsulfonic acid in 50% propan-2-ol-water was unusual and its structure is reported here.

In compound (I) (Fig. 1), the quinolinium H atom has a single interaction with a sulfonate-O acceptor of the anion $[N11-H11\cdotsO1B^{i} = 2.725 (3) \text{ Å} and N-H\cdotsO = 162 (2)^{\circ};$ symmetry code: (i) -x + 1, -y, -z + 1], giving a simple hydrogen-bonded heterodimer. The quinolinium cations form stacks through alternating inversion-related molecules in the unit cell (Fig. 2) [ring centroid separation = 3.666 (2) Å; interring dihedral angle = 0°]. The second and third sulfonate O atoms and the six nitro-O atoms are unassociated except for minor weak C-H···O interactions [C21-H···O1B = 3.342 (4) Å, C81-H···O1A^{i} = 3.466 (3) Å and C5-H···O2A^{ii} = 3.241 (4) Å; symmetry code: (ii) x + 1, y, z]. An

© 2006 International Union of Crystallography All rights reserved Received 24 October 2006

Accepted 3 November 2006

Figure 1

The asymmetric unit of (I). Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A perspective view of the packing in the unit cell of (I), viewed approximately down the *a*-axis direction, showing hydrogen-bonded associations as dashed lines. [Symmetry code (i): -x + 1, -y, -z + 1.]

unusually short non-bonding intermolecular sulfonate-O···nitro-N interaction is also present $[O1A \cdot \cdot \cdot N4^{iii} = 2.840 (3) \text{ Å}$; symmetry code: (iii) -x + 1, y, z].

The *ortho*-related nitro groups of the picrylsulfonate anions are significantly rotated out of the plane of the benzene ring [torsion angles C1-C2-N2-O2A = -61.6 (3)° and C1-C6-N6-O6B = 61.6 (3)°] compared with the essentially coplanar *para*-related group [C3-C4-N4-O4B = -176.8 (3)°].

Experimental

The title compound was synthesized by heating together 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid) (1 mmol) and quinoline (1 mmol) in 50% propan-2-ol-water (50 ml) under reflux for 10 min. After concentration to ca 30 ml, partial room-temperature evaporation of the hot-filtered solution gave yellow crystal plates (m.p. 532.7–533.9 K).

Crystal data

 $\begin{array}{l} C_9H_8N^+ \cdot C_6H_2N_3O_9S^- \\ M_r = 422.33 \\ \text{Triclinic, } P\overline{1} \\ a = 8.1070 \ (19) \text{ Å} \\ b = 9.486 \ (2) \text{ Å} \\ c = 12.581 \ (2) \text{ Å} \\ a \approx 79.41 \ (2)^\circ \\ \beta = 82.347 \ (16)^\circ \\ \gamma = 64.909 \ (16)^\circ \end{array}$

Data collection

Rigaku AFC 7*R* diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan *TEXSAN* for Windows (Molecular Structure Corporation, 1999) $T_{min} = 0.90, T_{max} = 0.97$ 3552 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.111$ S = 0.95 3026 reflections 266 parameters H atoms treated by a mixture of independent and constrained refinement $V = 859.6 (3) \text{ Å}^{3}$ Z = 2 $D_x = 1.632 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 0.25 \text{ mm}^{-1}$ T = 297 (2) KPlate, yellow $0.36 \times 0.28 \times 0.11 \text{ mm}$

3026 independent reflections 1992 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ $\theta_{max} = 25.0^{\circ}$ 3 standard reflections frequency: 150 min intensity decay: 0.5%

```
\begin{split} &w = 1/[\sigma^2(F_{\rm o}^2) + (0.0556P)^2 \\ &+ 0.1982P] \\ &where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3} \end{split}
```

The single quinolinium H atom was located by difference methods and its positional and isotropic displacement parameters were refined [refined N-H = 0.89 (3) Å]. The aromatic ring H atoms were included in the refinement in calculated positions, with C-H = 0.95 Å, and treated using a riding-model approximation, with $U_{iso}(H)$ = 1.2 $U_{eq}(C)$.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1999); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* for Windows (Molecular Structure Corporation, 1999); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

The authors acknowledge financial support from the School of Physical and Chemical Sciences, Queensland University of Technology, and the School of Science, Griffith University.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

- Molecular Structure Corporation (1999). *MSC/AFC Diffractometer Control Software* and *TEXSAN* for Windows (Version 1.06). MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2006). Unpublished data.

Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, 0575–0581. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.